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FIGURE 8.1 The light and carbon reactions of phm:w., nthe-
sis. Light is iu.[um_:i for the generation of ATP and

.'\ADPI . The ATP and T\.ADFH are consumed by the car-
bon reactions, which reduce CO, to carbohydrate (triose
phosphates). K
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FIGURE 8.2 The Calvin cycle proceeds in three stages: (1)
carboxylation, during w hich CO, is cov alently linked to a
carbon skeleton; (2) reduction, dut ing which E_dI’hUh’-, drate

is formed at the expense of the photochemically derived

ATP and reducing equivalents in the form of NADPH; anc

(3) regeneration, during which the CO, acceptor ribulose-

1,5-bisphosphate re-forms.
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FIGUREB.4 The carboxyla-
tion of ribulose-1,5-bisphos-
phate by rubisco.
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FIGURE 8.5 The ferredoxin-thioredoxin system reduces

SH HS §s—8§ specific enzymes in the light. Upon reduction, biosynthetic
enzymes are converted from an inactive to an active state.
The activation process starts in the light by a reduction of
ferredoxin by photosystem | (see Ch: apter 7). The reduced
terredoxin plus two protons are used to reduce a catalyti-

(oxidized}l {rEdUCEd:I cally active disulfide (—5—5—) group of the iron- —sulfur

enzvme ferredoxin:thioredoxin reductase, which in turn
Target enzyme

reduces the highly specific disulfide (—5—5—) bond of the
i 5 SH HS

TﬂrgEt eNZyme .mall regul atory |"1LI-lL’m thioredoxin (see Web Topic 8.4 for
details). The reduced form (—SH HS—) of thioredoxin then
reduces the critical disulfide bond (converts —5—5— to
—SH HS—) of a target enzyme and thereby leads to activa-
tion of that enzyme. Th( ht*hl signal is thus converted to a
Inactive Arctive sulfhydryl, or _SH, si gnal via ferredoxin and the enzyme
ferredoxin:thioredoxin reductase.




H* CO;

Mg?+
Lys Y Lys NE % Lys : T Lys

I SRR | TR TRl ST |
NH3* H NH; H*  NH Mg2* NH
Carbamylation CE!D‘ ED|D‘
o
Inactive Active

FIGURE 8.6 One way in which rubisco is activated involves the formation of a car-
bamate-Mg** complex on the e-amino group of a lysine within the active site of the
enzyme. Two protons are released. Activation is enhanced by the increase in Mg?>*
concentration and higher pH (low H' concentration) that result from illumination.
The CO, involved in the carbamate-Mg** maLtmn is not the same as the CO,
involved in the carboxylation of ribulose-1,5-bisphosphate.
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FIGURE 8.7 The main reactions of the photorespiratory
cycle, Operation of the C, oxidative photosynthetic cycle
involves the cooperative interaction among three

organelles: chloroplasts, mitochondria, and peroxisomes.
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FIGURE 8.9 Cross-sections of leaves, showing the anatomic
differences between C; and C, plants, (A} A C, monocot,
saccharum officinarum (sugarcane). (135x) (B) A C., monocot,
Poa sp. (a grass). (240x) (C) A C, dicot, Flaveria australasica
(Asteraceae). (740x) The bundle sheath cells are large in C,
leaves (A and C), and no mesophyll cell is more than two
or three cells away from the nearest bundle sheath cell.
These anatomic features are absent in the C, leaf (B). (D)
Three-dimensional model of a C, leaf. (A and B ® David
Webb; C courtesy of Athena McKown; [ after Li thee and
Higinbotham; E from Craig and Goodchild 1977}
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; | FIGURE8.10 The basic C, photosynthetic carbon cvcle involves four
AtmDSPhErm COE { stages in two different ::e-|ll tvpes: (1) Fixation of CO, into a four-carban
acid in a mesophyvll cell; (2) Transport of the four-carbon acid from the
Plasma mesophyll cell to a bundle sheath cell; (3) Decarboxylation of the four-car-
bon acid, and the generation of a high CO, concentration in the bundle
membrane sheath cell. The L0, released is fixed by rubisco and converted to carbo-
MESUth“ hydrate by the Calvin cvele.(4) Transport of the residual three-carbon acid

: back to the mesophyll cell, where the original CO, acceptor, phospho-
cell \ J,IC'E"” wall enclpyruvate, is regenerated.
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FIGURE 8.11

The C, photosynthetic pathway. The hydrolysis of two ATP drives the

cycle in the direction of the arrows, thus pumping CO, from the atmosphere to the
Calvin cycle of the chloroplasts from bundle sheath cells.
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FIGURE 8.12 Crassulacean acid metabolism (CAM). Temporal separation of CO, uptake
from photosynthetic reactions: CO, uptake and fixation take place at night, and decar-
boxylation and refixation of the mtemallv released CO, occur during the day. The adap-
tive advantage of CAM is the reduction of water loss by transpiration, achieved by the

stomatal opening during the night.
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n.a1duu‘ L""LI {Jl-' )y iL“lu a h:r|m of the enzyme which is
active during the night and relatively insensitive to malate.
During the day, dephosphorylation of the serine (Ser-OH)
gives a form of the enzyme which is inhibited by malate.
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FIGURE 8.14 The syntheses of starch and sucrose are compet-
processes that occur in the chloroplast and the cytosol, uTp Fructose-6-phosphate

mg

respectively. "._r"-r']wn the cytosolic P; concentration is ]11;;‘I-|: UDP-glucose sz Glucose-6-

chloroplast triose phosphate is exported to the cytosol via the Fﬁy;r;phﬁspharylase shosphate phosphate Hexose phosphate
P. in exchange for P, and sucrose is synthesized. When the Phospho- EE?E;EHSE

glucomutase
(B-6)

evtosolic P concentration is low, trinse [_‘]'ll._'laFﬂ!‘lHl-." is retained
within the chloroplast, and starch is synthesized. The num-
bers facing the arrows are keyed to Tables 8.5 and 5.6.




TABLE 8.5 T
Heactmns of starch synthesis frurn triuse phnsphate in chinrnplasts

1. Fructose-1,6,bisphosphate aldolase
Dihydroxyacetone-3-phosphate + glyceraldehyde-3-phosphate—s fructose-1,6-bisphosphate
(|:HEDH u’THzDPDHE- SOPOH.T . © ol
G0 HO—C—H
: i H\] 9/ cH,0p0,2-
s =
CH,0PO, f;?c\x o
L. Fructose-1,6-bisphosphatase
Fructose-1,6-bisphosphate + H,O — fructose-6-phosphate + P,

-’DPDHC EDPOHC

QH OPQ, - Q:H OH

3, Hexose phosphate isomerase
Fructose-6-phosphate — glucose-6-phosphate

¢°0;POH,C D CH,OPO_2-

HDH

HO




4. Phosphoglucomutase
Glucose-6-phosphate — glucose-1-phosphate

CH,0PO,2- CH,OH
H O_H H
H H
HO OH H OH HO CH H
H OH H

5. ADP-glucose pyrophosphorylase

Glucose-1-phosphate + ATP — ADP-glucose + PP,

CH,OH
|

H O _H
H

HONGT H/opo,2-
H HO

6. Pyrophosphatase
PP, + H,0 — 2 P, + 2H*

1. Starch synthase

ADP-glucose + (1,4-0-0-glucosyl),, — ADP + (1,4-0-0-glucosyl)

CH,OH

H DHT'_\, :|:|J

H HO flj {!}-

O_H

O—P— 00— P— 00— Adenosine

e
O—P—0— T_ 0 — Adenosine
|

o= L0

n+l
EHEDH

H O H
H

oot H Gl

H OH

MNonreducing end of a
starch chain with
n residues

CH,OH CH,OH
H O H H C
H H
L ONGHH % BHAHAL e o
H OH H OH

Elongated starch with
n+ 1 residues
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TABLE 8.6

Reactions of sucrose synthesis from triose phosphate in the cytosol

1. Phosphate/triose phosphate translocator
Triose phosphate (chloroplast) + P, (cytosol) — triose phosphate (cytosol) + P, (chloroplast)

2. Triose phosphate isomerase
Dihydroxyacetone-3-phosphate — glyceraldehyde-3-phosphate

2_
r.::HEGH {T‘H?_UF‘U3
C=10 HO—C—H

. |
CH.OPO_2- C
g s,
0 H

3. Fructose-1,6-bisphosphate aldolase
Dihydroxyacetone-3-phosphate + glyceraldehyde-3-phosphate — fructose-1,6-bisphosphate

7= 2-
?HEDH ﬁHEGPOH OPOHC g
C=0 HO — C— H ;
| | W\ "9/ cH,0p0,2-
CH,OPO,2- c ~
2 3 = HO o H
o H

4a. Fructose-1,6-phosphatase
Fructose-1,6-bisphosphate + H,0 — fructose-6-phosphate + P,

OLPOHLC oy 20.POHE . o

OH ] OH

H\] "9/ cH,0p0,2 H\( }/ CH,OH

HO H HO H




4b. PP-linked phosphofructokinase
Fructose-6-phosphate + PP, — fructose-1,6-bisphosphate + P,

2~ 0 F‘OH C 0O 2- D POH C
QZH OH @:H OPO,
HO H
5. Hexose phosphate isomerase
Fructose-6-phosphate  — glucose-6-phosphate

0,POH,C g

CH,OPO %~
Q
@&. o Q

6. Phosphoglucomutase
Glucose-6-phosphate — glucose-1-phosphate

CH, DPD
H O_H
DH H

7. UDP-glucose pyrophosphorylase

Glucose-1-phosphate + UTP - UDP-glucose + PP,
CH,0OH f|3|* ﬁ) rﬁ'r CH,OH
®
£} H  -0—P—0—P—0—P—O—Uridine H O_H o o
OH H | l | <¢: [ I
HO OPO,2- -0 -0 -0 OH H

HO 0O—Pp—D—P— 0—lUridine




TABLE 8.6 (continued) . : s o %
Reactions of sucrose synthesls fmm triose phasphaté m tha c:ytnsnl

8. Pyrophosphatase
PP, +H,0 — 2 P, + 2 H*

9. Sucrose phosphate synthase

UDP-glucose + fructose-6-phosphate — UDP + sucrose-6-phosphate
. 2_ il
CH,OH OPO—CH, 6 4 CH,OH
H O_H ﬁ) lj.:".' H 0. H
H H HO H
HONSH H D—T—~D—P—-D-—Uridine H CH,OH HONOH H
HO H
H OH O 0" H Ol

2--034:’0 =H S

o
0. Sucrose phosphate phosphatase H HO
Sucrose-6-phosphate + H,0 — sucrose + P, H CH,OH
CH,OH A1
H O H
H
HONOH H
H OH
HGHE'T'_ 0 o
H\]_ "9/ cH,0H H\G 1O ch.on
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FIGURE 8.16 Regulation of the cytosolic interconversion of fructose-6-phosphate and
fructose-1,6-bisphosphate. (A) The key metabolites in the allocation between glycolysis
and sucrose synthesis. The regulatory metabolite fructose 2,6-bisphosphate regulates
the interconversion by inhibiting the phosphatase and activating the kinase, as shown.
(B) The synthesis of fructose-2,6-bisphosphate itself is under strict regulation by the
activators and inhibitors shown in the figure.
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